Reliability analysis of hypercube networks and folded hypercube networks

LITAO GUO School of Applied Mathematics Xiamen University of Technology Xiamen Fujian 361024 P.R.CHINA Itguo2012@126.com

Abstract: - A network is often modeled by a graph G = (V, E) with the vertices representing nodes such as processors or stations, and the edges representing links between the nodes. One fundamental consideration in the design of networks is reliability. Let G be a connected graph and P be graph-theoretic property. The conditional connectivity $\lambda(G, P)$ or $\kappa(G, P)$ is the minimum cardinality of a set of edges or vertices, if it exists, whose deletion disconnects G and each remaining component has property P. Let F be a vertex set or edge set of G and P be the property of G - F with at least r components. Then we have r-component connectivity $c\kappa_r(G)$ and the r-component edge connectivity $c\lambda_r(G)$. In this paper, we determine the rcomponent edge connectivity of hypercubes and folded hypercubes.

Key-Words: - Reliability; Conditional connectivity; Cut; Networks; Component; Graph

1 Introduction

A network is often modeled by a graph G = (V, E)with the vertices representing nodes such as processors or stations, and the edges representing links between the nodes. One fundamental consideration in the design of networks is reliability [2,9]. Let G = (V, E) be a connected graph, $N_G(v)$ the neighbors of a vertex v in G (simply N(v)), E(v) the edges incident to v. Moreover, for $S \subset V$, G[S] is the subgraph induced by S, $N_G(S) = \bigcup_{v \in S} N(v) - S, N_G[S] = N_G(S) \cup S$, and G-S denotes the subgraph of G induced by the vertex set of $V \setminus S$. If $u, v \in V$, d(u, v) denotes the length of a shortest (u, v) -path. For $X, Y \subset V$, denote by [X, Y] the set of edges of G with one end in X and the other in Y. For graph-theoretical terminology and notation not defined here we follow [1]. All graphs considered in this paper are simple, finite and undirected.

A *r*-component cut of *G* is a set of vertices whose deletion results in a graph with at least *r* components. *r*-component connectivity $c\kappa_r(G)$ of *G* is the size of the smallest *r*-component cut. The *r*-component edge connectivity $c\lambda_r(G)$ can be defined correspondingly. We can see that $c\kappa_{r+1}(G) \ge c\kappa_r(G)$ for each positive integer r. The connectivity $\kappa(G)$ is the 2-component connectivity $c\kappa_2(G)$. The r-component (edge) connectivity was introduced in [3] and [11] independently. Fabrega and Fiol introduced extraconnectivity in [5]. Let $F \subseteq V$ be a vertex set, F is called extra-cut, if G - F is not connected and each component of G - F has more than k vertices. The extraconnectivity $\kappa_k(G)$ is the cardinality of the minimum extra-cuts.

The hypercube $Q_n = (V, E)$ with $|V| = 2^n$ and $|E| = n2^{n-1}$. Every vertex can be represent by an *n*-bit binary string. Two vertices are adjacent if and only if their binary string representation differs in only one bit position. The *n*-dimensional folded hypercube FQ_n is proposed by El-Amawy and Latifi [4]. FQ_n is obtained from Q_n by adding 2^{n-1} edges, called complementary edges, each of them is between vertices

 $x = (x_1, \dots, x_n)$ and $\overline{x} = (\overline{x}_1, \dots, \overline{x}_n)$, where $\overline{x}_i = 1 - x_i$. Obviously, FQ_n is obtained from Q_n by adding a perfect matching M where $M = \{(x, \overline{x}) : x \in V(Q_n)\}$. Because Q_n can be

neighbors for $n \ge 3$ if they have any.

Lemma 2.2 [17]

Any two vertices of FQ_n have exactly two common neighbors for $n \ge 4$ if they have.

Corollary 2.3

For any two vertices $x, y \in V(Q_n) (n \ge 3)$ or $V(FQ_n) (n \ge 4)$,

(1) if d(x, y) = 2, then they have exactly two common neighbors;

(2) if $d(x, y) \neq 2$, then they do not have common neighbors.

Lemma 2.4

Let x and y be any two vertices of $V(Q_n)(n \ge 3)$ such that have two common neighbors.

(1) If $x \in V(Q_{n-1}^0)$, $y \in V(Q_{n-1}^1)$, then the one common neighbor is in Q_{n-1}^0 , and the other one is in Q_{n-1}^1 .

(2) If $x, y \in V(Q_{n-1}^0)$ or $V(Q_{n-1}^1)$, then the two common neighbors are in Q_{n-1}^0 or Q_{n-1}^1 .

Proof

(1) Let x = 0u and $y = 1u_i$. Then x,y have two common neighbors $1u_i, 0u_i$. According to Lemma 2.1, the result holds.

(2) Let x = 0u and y = 0v. Since they have two common neighbors, we assume that they are $0u_i, 0u_j$. And $0u_{ij}$ has two neighbors $0u_i, 0u_j$. According to Lemma 2.1, $y = 0v = 0u_{ij}$.

Analogue to Lemma 2.4, we have

Lemma 2.5

For any two vertices $x, y \in V(FQ_n) (n \ge 4)$, $FQ_n = G(Q_{n-1}^0, Q_{n-1}^1, M_0 + \overline{M})$, and x and y have two common neighbors.

(1) If $x \in V(Q_{n-1}^0)$, $y \in V(Q_{n-1}^1)$, then one of the common neighbors is in Q_{n-1}^0 , and the other one is in Q_{n-1}^1 .

(2) If $x, y \in V(Q_{n-1}^0)$ or $V(Q_{n-1}^1)$, then both of the common neighbors are in Q_{n-1}^0 or Q_{n-1}^1 .

The following results are about the extraconnectivit-

 $M_{0} = \{(0u, 1u) : 0u \in V(Q_{n-1}^{0}), 1u \in V(Q_{n-1}^{1})\} \text{ .Simil}$ arly, FQ_{n} can be viewed as $G(Q_{n-1}^{0}, Q_{n-1}^{1}, M_{0} + \overline{M})$, where $M_{0} = \{(0u, 1u) : 0u \in V(Q_{n-1}^{0}), 1u \in V(Q_{n-1}^{1})\}$ and

0 and 1 of each vertex, respectively. Furthermore,

 Q_n can be viewed as $G(Q_{n-1}^0, Q_{n-1}^1, M_0)$, where

 $\overline{M} = \{(0u, 1\overline{u}) : 0u \in V(Q_{n-1}^0), 1\overline{u} \in V(Q_{n-1}^1)\}.$

 FQ_n is (n+1)-regular and (n+1)-connected. Moreover, FQ_n is a Cayley graph. It has diameter $\lceil n/2 \rceil$, about a half of the diameter of Q_n [4]. Thus, the folded hypercube FQ_n is an enhancement on the hypercube Q_n .

The fault tolerance analysis of hypercubes and folded hypercubes has recently attracted the attention of many researchers [6,7,10,12,13,17,18, 20,21]. In [8], Hsu et al. determined the r component connectivity of the hypercube Q_n for $r = 2, 3, \dots, n+1$. In [19], Zhao et al. determined the r-component connectivity of the hypercube Q_n for $r = n + 2, n + 3, \cdots, 2n - 4$. In this paper, we obtain that: (1) $c\kappa_2(FQ_n) = \kappa(FQ_n) = n + 1 (n \ge 4)$. (2) $c\kappa_3(FQ_n) = 2n(n \ge 4)$. (3) $c\kappa_4(FQ_n) = 3n - 2(n \ge 4)$. (4) $c\lambda_2(Q_n) = \lambda(Q_n) = n$ for $n \ge 2$. (5) $c\lambda_3(Q_n) = 2n-1$ for $n \ge 2$. (6) $c\lambda_{4}(Q_{n}) = 3n-2$ for $n \ge 2$. (7) $c\lambda_2(FQ_n) = \lambda(FQ_n) = n+1$ for $n \ge 3$. (8) $c\lambda_3(FQ_n) = 2n+1$ for $n \ge 3$. (9) $c\lambda_4(FQ_n) = 3n+1$ for $n \ge 3$.

2 Main results

For the sake of convenience, we denote the vertex whose *i* th coordinate of the binary string representation different from *v*'s by v_i . Similarly, v_{ij} is the vertex whose *n* -bit binary string which differs in the *j* th position with v_i . Clearly, $v_{ii} = v$. **Lemma 2.1** [18]

y of FQ_n , and we will use them in the following proof.

Lemma 2.6

(1) $\kappa_0(FQ_n) = \kappa(FQ_n) = n + 1 (n \ge 2)$. [4] (2) $\kappa_1(FQ_n) = 2n(n \ge 4), \kappa_2(FQ_n) = 3n - 2(n \ge 8)$. [12,17]

Lemma 2.7 [8] $c\kappa_{k+1}(Q_n) = kn - k(k+1)/2 + 1$, for $n \ge 2, 1 \le k \le n$.

Lemma 2.8

(1) Let $u \in Q_n (n \ge 3)$. $\kappa(Q_n - N[u]) = n - 2$. [16] (2)Let $u, v \in Q_n (n \ge 3), uv \in E$. Then we have $\kappa(Q_n - N[u, v]) = n - 2$.[15]

Theorem 2.9 $c\kappa_2(FQ_n) = \kappa(FQ_n) = n + 1 (n \ge 4)$.

Theorem 2.10 $c\kappa_3(FQ_n) = 2n(n \ge 4)$.

Proof We choose two nonadjacent vertices x, y in a cycle C_4 . Then $FQ_n - N(\{x, y\})$ has at least 3 connected components and $|N(\{x, y\})| = 2n$. That is $c\kappa_3(FQ_n) \le 2n$.

We will show $c\kappa_3(FQ_n) \ge 2n$. It is easy to check that it is true for n = 4. So we suppose $n \ge 5$.

By contradiction. Let $F \subseteq V(FQ_n)$, with $|F| \le 2n-1$. And $FQ_n - F$ has at least 3 connected components, say, G_1, G_2 and G_3 .

If $FQ_n - F$ has at least 2 isolated vertices, then $|F| \ge 2n$, a contradiction. Hence $FQ_n - F$ has at most one isolated vertex.

If each component of $FQ_n - F$ has at least 2 vertices, then it contradicts to $\kappa_1(FQ_n) = 2n$. Therefore, $FQ_n - F$ has only one isolated vertex x. Because $FQ_n = G(Q_{n-1}^0, Q_{n-1}^1, M_0 + \overline{M})$, we have $|F \cap V(Q_{n-1}^0)| \le n-1$ or $|F \cap V(Q_{n-1}^1)| \le n-1$. Without loss of generality, we set $|F \cap V(Q_{n-1}^0)| \le n-1$.

Case 1. $Q_{n-1}^0 - F$ is not connected.

Firstly, we assume that $x \in V(Q_{n-1}^1)$. Because $|F \cap V(Q_{n-1}^0)| \le n-1, |N_{Q_{n-1}^1}(x)| = \kappa(Q_{n-1}) = n-1$, we have $|F \cap V(Q_{n-1}^0)| = n-1$. By Lemma 2.8, $Q_{n-1}^1 - (F \cup \{x\})$ is connected. Since $|F| \le 2n-1$, we need delete the last one vertex z in $Q_{n-1}^1 - N_{Q_{n-1}^1}[x]$. For any $u \in V(Q_{n-1}^0) - F$, u has at least one neighbor in $Q_{n-1}^1 - (F \cup \{x\})$ or is connected to $Q_{n-1}^1 - (F \cup \{x\})$ via $N_{Q_{n-1}^0}(u)$ according to Lemma 2.5. Then $FQ_n - F$ has only two components, a contradiction.

Hence $x \in V(Q_{n-1}^0)$. So $Q_{n-1}^0 - F$ has only two components. For any $u \in V(Q_{n-1}^1) - F$, u and xhave at most one common neighbor in Q_{n-1}^0 by Lemma 2.5. B ut u has two neighbors in Q_{n-1}^0 , furthermore u has at least one neighbor in $V(Q_{n-1}^0) - F$. Then $FQ_n - F$ has only two components, a contradiction.

Case 2. $Q_{n-1}^0 - F$ is connected.

Then $x \in V(Q_{n-1}^1) - F$. If there is a neighbor in $Q_{n-1}^0 - F$ for any $y \in V(Q_{n-1}^1) - (F \cup \{x\})$, then $FQ_n - F$ has only two components, a contradiction. We assume that there is a vertex $y \in V(Q_{n-1}^1) - (F \cup \{x\})$ such that there exits no neighbor in $Q_{n-1}^0 - F$. There must be a neighbor of y in $Q_{n-1}^1 - F$ because of $|F| \le 2n - 1$. Since $|N_{FQ_n}(x)| = n + 1$ and $|N_{Q_{n-1}^0}(y)| = 2$, we need delete at most n - 4 vertices in

$$FQ_n - N_{FQ_n}(x) - N_{O_{n-1}^0}(y)$$
.

Whether x and y have common neighbors in Q_{n-1}^1 or not, y has at least n-4 neighbors in $FQ_n - N_{FQ_n}(x) - N_{Q_{n-1}^0}(y)$. And these neighbors are in Q_{n-1}^1 . Note that each vertex of Q_{n-1}^1 has two neighbors in Q_{n-1}^0 . According to Pigeonhole principle, y is connected to $Q_{n-1}^0 - F$. Hence $FQ_n - F$ has only two components, a contradiction.

Lemma 2.11 [12] $\kappa_1(Q_n) = 2n - 2(n \ge 3)$.

Lemma 2.12 [14]

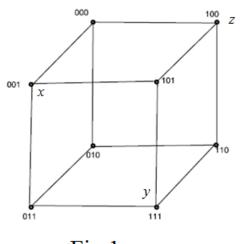
Let FQ_n be a folded hypercube with $n \ge 8$, and $F \subseteq V(FQ_n)$ with $|F| \le 3n-3$, then there is a connected component C in $FQ_n - F$ such that $|V(C)| \ge 2^n - |F| - 2$.

Theorem 2.13

 $c\kappa_4(FQ_n) = 3n - 2(n \ge 4).$

Proof

We choose a Q_3 and two 4-cycles, say C_1, C_2 , of Q_3 . Take two nonadjacent vertices x, y in C_1 , and take a vertex z in C_2 such that d(y, z) = 2 (see Fig.1).



Then $|N(\{x, y, z\})| = 3n - 2$ and $FQ_n - N(\{x, y, z\})$ has at least 4 components. Hence $c\kappa_4(FQ_n) \le 3n - 2$.

We will show $c\kappa_4(FQ_n) \ge 3n-2$. It is easy to check that holds for n = 4, 5. So we suppose $n \ge 6$.

By contradiction. Let $F \subseteq V(FQ_n)$, with $|F| \le 3n-3$. If $n \ge 8$, then by Lemma 2.12, $FQ_n - F$ has at most 3 connected components, a contradiction. We need show $c\kappa_4(FQ_n) \ge 3n-2$ for n = 6, 7.

Suppose n = 6, we will show $c\kappa_4(FQ_6) \ge 16$. By contradiction. Let $F \subseteq V(FQ_n)$, with $|F| \le 15$.

Because $FQ_6 = G(Q_5^0, Q_5^1, M_0 + \overline{M})$, we have $|F \cap V(Q_5^0)| \le 7$ or $|F \cap V(Q_5^1)| \le 7$. Without

loss of generality, we set $|F \cap V(Q_5^0)| \le 7$. And $FQ_6 - F$ has at most two isolated vertices.

Case 1. $FQ_6 - F$ has two isolated vertices x, y. Then at most one of x and y is in Q_5^0 .

Subcase 1.1. $d(x, y) \neq 2$.

Hence $N(x) \cap N(y) = \emptyset$, $N(x) \cup N(y) \subseteq F$ and |N(x)| + |N(y)| = 14.

If x is in Q_5^0 , and y is in Q_5^1 , then $N_{Q_5^0}(x) \subseteq F$, $|N_{Q_5^0}(x)| = 5$. Note that

 $|N_{O_{r}^{0}}(x)| + |N_{O_{r}^{0}}(y)| = 7$

and

 $|F \cap V(Q_5^0)| \le 7$. Then $F \cap V(Q_5^0) = N_{Q_5^0}(x) \cup N_{Q_5^0}(y)$. According to Lemma 2.8, $\kappa(Q_5^0 - N_{Q_5^0}(x) - x) = 3$, hence

 $Q_5^0 - F - x$ is connected. Furthermore, for any $z \in Q_5^1 - (F \cup \{y\})$, *z* has at least one neighbor in $Q_5^0 - (F \cup \{x\})$ by Lemma 2.5. Therefore, $FQ_6 - F$ has at most three connected components, a contradiction.

If x and y are in
$$Q_5^1$$
, then

$$|V(Q_{5}^{0}) \cap F| \ge$$

$$|N_{Q_{5}^{0}}(x)| + |N_{Q_{5}^{0}}(y)| = 4,$$

$$|V(Q_{5}^{1}) \cap F| \ge$$

$$|N_{O_{5}^{1}}(x)| + |N_{O_{5}^{1}}(y)| = 10.$$

Since $c\kappa_3(Q_5) = 8 > 5$ by Lemma 2.7, $Q_5^0 - F$ has at most two components. For any $z \in Q_5^1 - F$, *z* has at least one neighbor in $Q_5^0 - F$ by Lemma 2.5. Then $FQ_6 - F$ has at most three connected components, a contradiction.

Subcase 1.2. d(x, y) = 2.

It is similar to that of Subcase 1.1, for any $z \in Q_5^1 - F$, z has at least one neighbor in $Q_5^0 - F$ or can be connected to $Q_5^0 - F$ by a path.

Case 2. $FQ_6 - F$ has only one isolated vertex x.

Subcase 2.1. $x \in V(Q_5^0)$.

Because $|N_{Q_5^0}(x)| = 5$, $|V(Q_5^0) \cap F| \le 7$, according to Lemma 2.7, $Q_5^0 - F$ has only two components. At most one of vertex, say y, of $Q_5^1 - F$ does not have neighbors in $Q_5^0 - F$. And y has a neighbor z in $Q_5^1 - F$. There is at least one neighbor of z in $Q_5^0 - F$ by Lemma 2.5. Hence y is connected to $Q_5^0 - F$. Then $FQ_6 - F$ has at most three connected components, a contradiction.

Subcase 2.2. $x \in V(Q_5^1)$.

Since $\kappa_1(Q_5) = 8$ by Lemma 2.11, we can obtain that $Q_5^0 - F$ is connected or $Q_5^0 - F$ has an isolated vertex y and y has neighbors in $FQ_6 - F$ (that is, y is the isolated vertex of $Q_5^0 - F$ but not $FQ_6 - F$).

We assume that $Q_5^0 - F$ is connected. We will show that for any $u \in Q_5^1 - (F \cup \{x\})$, u is connected to $Q_5^0 - F$. By contradiction. There is a vertex $u \in Q_5^1 - (F \cup \{x\})$, u is not connected to $Q_5^0 - F$. Then $N_{Q_5^0}(u) \subseteq F$. And u has a neighbor v in $Q_5^1 - F$, v has no n eighbors in $Q_5^0 - F$. Hence $N_{Q_5^0}(v) \subseteq F$.

If $FQ_6[\{u,v\}]$ is a connected component of $FQ_6 - F$, then

$$N_{Q_{5}^{1}}(\{u,v\}) \subseteq F, |N_{Q_{5}^{1}}(\{u,v\})| = 8,$$

$$|N_{Q_{5}^{0}}(u)| = |N_{Q_{5}^{0}}(v)| = |N_{Q_{5}^{0}}(x)| = 2$$

and $N_{Q_5^0}(u), N_{Q_5^0}(v), N_{Q_5^0}(x)$ are pairwise disjoint. Note that $|F| \le 15$. For any

 $w \in Q_5^1 - F - N_{O_5^1}(\{u, v\}) - \{u, v, x\},\$

w has a neighbor in $Q_5^0 - F$. Then $FQ_6 - F$ has at most three connected components, a contradiction.

Suppose that u has another neighbor, say w, different from v in $Q_5^1 - F$. Because of $|F \cap V(Q_5^0)| \le 7$, w has a neighbor in $Q_5^0 - F$. Then $FQ_6 - F$ has at most three connected components, a contradiction. If v has another neighbor, say w', different from u in $Q_5^1 - F$, then it is similar to the front of the above case. We have a contradiction.

Now we assume that $Q_5^0 - F$ has an isolated vertex y and y has neighbors in $Q_5^1 - F$. And $Q_5^0 - (F \cup \{y\})$ is connected. Because $N_{Q_5^0}(x) \subseteq F, N_{Q_5^0}(y) \subseteq F,$ $|N_{Q_5^0}(y)| = 5, |N_{Q_5^0}(x)| = 2,$ $|F \cap V(Q_5^0)| \le 7.$

For any $w \in Q_5^1 - (F \cup \{x\})$, as the above discussion, w is connected to $Q_5^0 - F$. Then $FQ_6 - F$ has at most three connected components, a contradiction.

Case 3. $FQ_6 - F$ has no isolated vertices.

Since $\kappa_1(Q_5) = 8$ by Lemma 2.11 a nd $|F \cap V(Q_5^0)| \le 7$, we can obtain that $Q_5^0 - F$ is connected or $Q_5^0 - F$ has an isolated vertex, say y, such that y has neighbors in $Q_5^1 - F$ (that is, y is the isolated vertex of $Q_5^0 - F$ but not $FQ_6 - F$).

Subcase 3.1. $Q_5^0 - F$ is connected.

We will show that for any $u \in Q_5^1 - F$, u is connected to $Q_5^0 - F$. By contradiction, we assume that there is a v ertex $u \in Q_5^1 - F$, u is not connected to $Q_5^0 - F$. Then $N_{Q_5^0}(u) \subseteq F$. And uhas a neighbor v in $Q_5^1 - F$, v has no neighbors in $Q_5^0 - F$. Hence $N_{Q_5^0}(v) \subseteq F$.

If $FQ_6[\{u,v\}]$ is a connected component of $FQ_6 - F$, then

$$\begin{split} &N_{Q_{5}^{1}}(\{u,v\}) \subseteq F, \\ &|N_{Q_{5}^{1}}(\{u,v\})| = 8, \\ &|N_{Q_{5}^{0}}(u)| = |N_{Q_{5}^{0}}(v)| = 2 \end{split}$$

and $N_{Q_5^0}(u), N_{Q_5^0}(v)$ are disjoint.

$$w \in Q_5^1 - F - N_{Q_5^1}(\{u, v\}) - \{u, v\},\$$

w is not connected to $Q_5^0 - F$. Then $N_{Q_5^0}(w) \subseteq F$. According to Lemma 2.5, u, v, w do not have common neighbors in Q_5^0 . Because

$$|N_{Q_{5}^{0}}(u)| + |N_{Q_{5}^{0}}(v)| + |N_{Q_{5}^{0}}(w)| = 6,$$

| $F \cap V(Q_{5}^{0}) \leq 7,$
where a neighbor we in

and w has a neighbor w_1 in

$$Q_5^1 - F - N_{Q_5^1}(\{u,v\}) - \{u,v\},\$$

 w_1 has a neighbor in $Q_5^0 - F$. Then $FQ_6 - F$ has at most three connected components, a contradiction.

Hence for any $w \in Q_5^1 - F - N_{Q_5^1}(\{u, v\}) - \{u, v\},\$

w is connected to $Q_5^0 - F$. We obtain a contradiction.

Suppose that u has another neighbor w different from v in $Q_5^1 - F$. Then $N_{Q_5^0}(w) \subseteq F$. And

$$|N_{Q_5^0}(u)| + |N_{Q_5^0}(v)| + |N_{Q_5^0}(w)| = 6,$$

$$|F \cap V(Q_5^0)| \le 7.$$

For any $z \in Q_5^1 - F - N_{Q_5^1}(\{u, v, w\}) - \{u, v, w\}, z$

is connected to $Q_5^0 - F$. We also obtain a contradiction. If v has another neighbor w' different from u in $Q_5^1 - F$, then it is similar to the front of the above case. We have a contradiction.

Subcase 3.2. $Q_5^0 - F$ has an isolated vertex y and y has neighbors in $Q_5^1 - F$ (that is, y is the isolated vertex of $Q_5^0 - F$ but not $FQ_6 - F$).

The proof is similar to that of Subcase 2.2, we get a contradiction.

For n = 7, we can show $c\kappa_4(FQ_7) = 19$ using the similar method.

Theorem 2.14 $c\lambda_2(Q_n) = \lambda(Q_n) = n \text{ for } n \ge 2.$

Theorem 2.15 $c\lambda_3(Q_n) = 2n-1$ for $n \ge 2$. **Proof** Take an edge e = uv, then $|E(u) \cup E(v)| = 2n-1$. And $Q_n - E(u) - E(v)$ has at least 3 connected components. That is $c\lambda_3(Q_n) \le 2n-1$.

Next we will show that $c\lambda_3(Q_n) \ge 2n-1$ by induction. It is easy to check it is true for n = 2, 3, 4. So we suppose $n \ge 5$ and assume it is true for all k < n. We will prove that is true for k = n.

Let $F \subseteq E(Q_n)$ with $|F| \le 2n-2$, and $Q_n - F$ has at least 3 c omponents. Now since $Q_n = Q_{n-1}^0 \odot Q_{n-1}^1$, we have $|E(Q_{n-1}^0) \cap F| \le n-1$ or $|E(Q_{n-1}^1) \cap F| \le n-1$, say $|E(Q_{n-1}^0) \cap F| \le n-1$. Since $\lambda(Q_{n-1}) = n-1$, we have two cases.

Case 1. $Q_{n-1}^0 - F$ is not connected.

Then $|E(Q_{n-1}^0) \cap F| = n-1$ and $Q_{n-1}^0 - F$ has only two components.

If $Q_{n-1}^1 - F$ is not connected, then $|E(Q_{n-1}^1) \cap F|$ = n-1. That is $[Q_{n-1}^0, Q_{n-1}^1] \cap F = \emptyset$. But each vertex of $Q_{n-1}^1 - F$ is connected to one component of $Q_{n-1}^0 - F$. Hence $Q_n - F$ has only two components, a contradiction.

Note that $|[Q_{n-1}^0, Q_{n-1}^1]| = 2^{n-1} > n - 1 (n \ge 5)$. If $Q_{n-1}^1 - F$ is connected, then $Q_{n-1}^1 - F$ is connected to one component of $Q_{n-1}^0 - F$. Hence $Q_n - F$ has only two components, a contradiction.

Case 2. $Q_{n-1}^0 - F$ is connected.

If $Q_{n-1}^1 - F$ is connected, then we are done. We assume that $Q_{n-1}^1 - F$ is not connected. And $Q_{n-1}^1 - F$ has at most one isolated vertex since $|F| \le 2n-2$.

If $Q_{n-1}^1 - F$ has at least 3 components, from the inductive hypothesis, then $|E(Q_{n-1}^1) \cap F| \ge 2n-3$. Hence at most one of components of $Q_{n-1}^1 - F$ is not connected to $Q_{n-1}^0 - F$, $Q_n - F$ has at most two components, a contradiction. Therefore we assume that $Q_{n-1}^1 - F$ has only two components. But $2^{n-1} - (2n-2) > 0 (n \ge 5)$, $Q_n - F$ has at most two components, a contradiction.

Theorem 2.16

 $c\lambda_4(Q_n) = 3n-2$ for $n \ge 2$.

Proof

Take a path $P_3 = uvw$. Then

 $|E(u) \cup E(v) \cup E(w)| = 3n - 2.$

And $Q_n - E(u) - E(v) - E(w)$ has at least 4 connected components. That is $c\lambda_4(Q_n) \le 3n - 2$.

Next we will show that $c\lambda_4(Q_n) \ge 3n-2$ by induction. It is easy to check it is true for n = 2, 3, 4. So we suppose $n \ge 5$ and assume this is true for all k < n. We will prove that is true for k = n.

Let $F \subseteq E(Q_n)$ with $|F| \le 3n-3$, and $Q_n - F$ has at least 4 c omponents. Now since $Q_n = Q_{n-1}^0 \odot Q_{n-1}^1$, we have

 $|E(Q_{n-1}^0) \cap F| \leq [3n/2] - 2$

or

$$|E(Q_{n-1}^{1}) \cap F| \leq [3n/2] - 2,$$

say, $|E(Q_{n-1}^0) \cap F| \leq [3n/2] - 2$.

Since $c\lambda_3(Q_{n-1}) = 2n - 3 > [3n/2] - 2(n \ge 5)$

 $Q_{n-1}^0 - F$ has at most two components.

Case 1. $Q_{n-1}^0 - F$ is connected.

If $Q_{n-1}^1 - F$ has at least 4 components, then $c\lambda_4(Q_{n-1}) \ge 3n-5$ by the inductive hypothesis. We need delete at most two edges again. Since each vertex of Q_{n-1}^1 has a neighbor in Q_{n-1}^0 and $|[Q_{n-1}^0, Q_{n-1}^1]| = 2^{n-1} > 2(n \ge 5)$, $Q_n - F$ has at most 3 components, a contradiction.

Suppose $Q_{n-1}^1 - F$ has at most 3 components. Because $|[Q_{n-1}^0, Q_{n-1}^1]| = 2^{n-1} - (3n-3) > 0 (n \ge 5)$, $Q_n - F$ has at most 3 components, a contradiction.

Case 2. $Q_{n-1}^0 - F$ has only two connected components.

 $\begin{array}{lll} \mbox{Then} \mid E(Q_{n-1}^0) \cap F \mid \geq \lambda(Q_{n-1}) = n-1 \mbox{ and } \\ \mid E(Q_{n-1}^1) \cap F \mid \leq 2n-2 \ . \mbox{ And } c\lambda_3(Q_{n-1}) = 2n-3 \ . \\ \mbox{ If } Q_{n-1}^1 - F \mbox{ has at least } 3 \ \mbox{ components, then } \\ \mid E(Q_{n-1}^1) \cap F \mid \geq 2n-3 \ \ \mbox{ and } \ \mid E(Q_{n-1}^0) \cap F \mid \leq n \ . \\ \mbox{ But } \mid [Q_{n-1}^0,Q_{n-1}^1] \cap F \mid \leq 1 \ \ \mbox{ and } \ 2^{n-1} > 1(n \geq 5) \ , \\ Q_n - F \ \ \ \mbox{ has at most two components, a contradiction.} \\ \mbox{ Hence } Q_{n-1}^1 - F \ \ \mbox{ has at most two components.} \\ \mbox{ We have } \mid [Q_{n-1}^0,Q_{n-1}^1] \mid > 3n-3(n \geq 5) \ , \ \ \ \ \mbox{ and } \end{array}$

 $Q_n - F$ has at most 3 components, a contradiction.

And because the hypercube Q_n is the subgraph of the folded hypercube FQ_n , we can apply the similar method to FQ_n . Hence we have the following theorem.

Theorem 2.17

(1) $c\lambda_2(FQ_n) = \lambda(FQ_n) = n+1$ for $n \ge 3$.

(2) $c\lambda_3(FQ_n) = 2n+1$ for $n \ge 3$.

(3)
$$c\lambda_4(FQ_n) = 3n+1$$
 for $n \ge 3$.

4 Acknowledgements

We would like to thank the referees for kind help and valuable suggestions.

References:

- [1] J. Bondy, U. Murty, *Graph theory and its application*, Academic Press, 1976.
- [2] E. Cheng, L. Lesniak, M. Lipman, L. Liptak, Conditional matching preclusion sets, *Information Sciences*, Vol. 179, 2009, pp. 1092-1101.
- [3] G. Chartrand, S. Kapoor, L. Lesniak, D. Lick, Generalized connectivity in graphs, *Bull. Bombay Math. Colloq.*, Vol. 2, 1984, pp.1-6.
- [4] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, *IEEE Trans. Parallel Distrib. Syst.*, Vol. 2, 1991, pp. 31 - 42.
- [5] J. Fabrega, M. Fiol, On the extraconnectivity of graphs, *Discr. Math.*, Vol. 155, 1996, pp. 49 -57.

- [6] L. Guo, X. Guo, Fault tolerance of hypercubes and folded hypercubes, *J. Supercomput.* Vol. 68, 2014, pp. 1235-1240.
- [7] S. Hsieh, Extra edge connectivity of hypercube-like networks, *Int. J. Parallel Emergent Distrib. Syst.*, Vol. 28, 2013, pp. 123-133.
- [8] L. Hsu, E. Cheng, L. Liptak, J. Tan, C. Lin, T. Ho, Component connectivity of the hypercubes, *Int. J. Comput. Math.* Vol. 89, 2012, pp. 137-145.
- [9] M. Lin, M. Chang, D. Chen, Efficient algorithms for reliability analysis of distributed computing systems, *Inform. Sci.*, Vol.117, 1999, pp. 89 - 106.
- [10] L. Lin, L. Xu, S. Zhou, Relating the extra connectivity and the conditional diagnosability of regular graphs under the comparison model, *Theoretical Comput. Sci.*, Vol. 618, 2016, pp. 21-29.
- [11] E. Sampathkumar, Connectivity of a graph—a generalization, J. Comb.Inf. Syst. Sci., Vol. 9, 1984, pp.71-78.
- [12] J. Xu, Q. Zhu, X. Hou, T. Zhou, On restricted connectivity and extra connectivity of hypercubes and folded hypercubes, *J. Shanghai Jiaotong Univ., Sci.* Vol. 10, 2005, pp. 203-207.
- [13] W. Yang, H. Li, On reliability of the folded hypercubes in terms of the extra edgeconnectivity, *Inform. Sci.*, Vol. 272, 2014, pp.238-243.
- [14] W. Yang, S. Zhao, S. Zhang, Strong Menger connectivity with conditional faults of folded hypercubes, *Inform. Processing Let.*, Vol. 125, 2017, pp.30-34.
- [15] X. Yang, D. J. Evans, B. Chen, G. M. Megson, H. Lai, On the maximal connected component of hypercube with faulty vertices. *Int. J. Comp. Math.*, Vol. 81, 2004, pp. 515-525.
- [16] X. Yang, Fault tolerance of hypercube with forbidden faulty sets. *Proc. 10th Chinese Conf. Fault-Tolerant Computing*. Peking, 2003, pp. 135-139.
- [17] Q. Zhu, J. Xu, X. Hou, M. Xu, On reliability of the folded hypercubes, *Inform. Sci.*, Vol.177, 2007, pp. 1782 - 1788.
- [18] Q. Zhu, J. Xu, On restricted edge connectivity and extra edge connectivity of hypercubes and foled hypercubes, J. University of Science and Technology of China, Vol. 36, 2006, pp. 246 -253.
- [19] S. Zhao, W. Yang, S. Zhang, Component connectivity of hypercubes, *Theoretical Comput. Sci.* Vol. 640, 2016, pp.115-118.

- [20] M. Zhang, J. Zhou, On g-extra connectivity of folded hypercubes, *Theoretical Comput. Sci.* Vol. 593, 2015, pp.146-153.
- [21] M. Zhang, L. Zhang, X. Feng, Reliability measures in relation to the h-extra edgeconnectivity of folded hypercubes, *Theoretical Comput. Sci.* Vol. 615, 2016, pp.71-77.